Bard Conservatory Alumna Avery Morris ’18 Awarded Fulbright for Research in the Czech Republic
Bard Conservatory alumna Avery Morris ’18, who graduated with a BA in Mathematics and a BM in Violin Performance, has been selected for a prestigious Fulbright Study Research Award for 2023–24. Her project, “Gideon Klein’s Lost Works and the Legacy of Czech Musical Modernism,” aims to bring to light the early works of Czech composer and Holocaust victim Gideon Klein (1919–1945), which were lost until they were discovered in a suitcase in the attic of a house in Prague in the 1990s.
Bard Conservatory Alumna Avery Morris ’18 Awarded Fulbright for Research in the Czech Republic
Bard Conservatory alumna Avery Morris ’18, who graduated with a BA in Mathematics and a BM in Violin Performance, has been selected for a prestigious Fulbright Study Research Award for 2023–24. Her project, “Gideon Klein’s Lost Works and the Legacy of Czech Musical Modernism,” aims to bring to light the early works of Czech composer and Holocaust victim Gideon Klein (1919–1945), which were lost until they were discovered in a suitcase in the attic of a house in Prague in the 1990s. She will live in Prague for the upcoming academic year and continue her research on Klein, which has been a focus of her studies at Stony Brook University, where she is pursuing a Doctorate of Musical Arts in Violin Performance.
Seven Bard College graduates—Juliana Maitenaz ’22, Evan Tims ’19, Elias Ephron ’23, Eleanor Tappen ’23, Macy Jenks ’23, Avery Morris ’18, and Many Correa '21—have won 2023–24 Fulbright Awards for individually designed research projects, graduate study, and English teaching assistantships. During their grants, Fulbrighters meet, work, live with, and learn from the people of the host country, sharing daily experiences. The Fulbright program facilitates cultural exchange through direct interaction on an individual basis in the classroom, field, home, and in routine tasks, allowing the grantee to gain an appreciation of others’ viewpoints and beliefs, the way they do things, and the way they think. Bard College is a Fulbright top producing institution.
Seven Bard College Graduates Win 2023 Fulbright Awards
Seven Bard College graduates have won 2023–24Fulbright Awards for individually designed research projects, graduate study, and English teaching assistantships. During their grants, Fulbrighters meet, work, live with, and learn from the people of the host country, sharing daily experiences. The Fulbright program facilitates cultural exchange through direct interaction on an individual basis in the classroom, field, home, and in routine tasks, allowing the grantee to gain an appreciation of others’ viewpoints and beliefs, the way they do things, and the way they think. Bard College is a Fulbright top producing institution.
Juliana Maitenaz ’22, who graduated with a BA in Global and International Studies and a BM in Classical Percussion Performance, has been selected for an independent study–research Fulbright scholarship to Brazil for the 2023–24 academic year. Her project, “Rhythm and Statecraft,” seeks to identify Brazilian percussion and rhythms as a method of cultural communication. Maitenaz aims to conduct her research in São Paulo and will focus on how percussional elements in the Brazilian traditions of Carnival and Samba School performances are instrumental to the country’s statecraft and national identity. The goal of her research is to examine international communication and collaboration through cultural and musical diplomacy. “I’m thrilled to have the opportunity to learn more about the role Brazilian percussion plays as an inspiring means of cultural communication,” Maitenaz said.
Evan Tims ’19, who was a joint major in Written Arts and Human Rights with a focus on anthropology at Bard, has been selected for a Fulbright-Nehru independent study–research scholarship to India for the 2023–24 academic year. His project, “From the River to Tomorrow: Perceptions of Kolkata’s Water Future,” studies the perceptions of Kolkata’s water future among urban planners, infrastructure experts, and communities—such as those who work in river transport, fishing, and who live in housing along the banks—most vulnerable to water changes along the Hooghly River. He will analyze the dominant narratives of the city and river’s future and reference scientific and planning literature in understanding the points of confluence and divergence between scientific and colloquial understandings of the river, particularly as different stakeholder communities approach an uncertain water future. “In light of urban development and climate change, Kolkata’s water is facing significant change over the coming decades,” said Tims. “It is crucial to understand the complex, layered relationships between stakeholder communities as they seek to negotiate an increasingly uncertain water future.” While in India, Tims also plans to teach a climate fiction writing workshop. In 2021-2022, he was Bard’s first recipient of the yearlong Henry J. Luce Scholarship, which enabled him to conduct ethnographic research on Himalayan water futures and lead a climate writing workshop in Nepal and, later, in Bangladesh. Earlier this academic year, Tims won the prestigious Schwarzman Scholarship to China. As an undergraduate at Bard, Tims also won two Critical Language Scholarships to study Bangla in Kolkata during the summers of 2018 and 2019.
Elias Ephron ’23, a joint major in Political Studies and Spanish Studies, has been selected as a Fulbright English Teaching Assistant (ETA) to Spain for the 2023–24 academic year. While in Spain, Ephron hopes to engage with his host community through food, sharing recipes, hosting dinner parties, and cooking together; take part in Spain’s unique and visually stunning cultural events, like flamenco performances, and Semana Santa processions; visit the hometown of the great poet and playwright Federico García Lorca; and, as a queer individual, meet other queer people. “Having learned Spanish, French, and German to fluency or near-fluency, I understand that language learning requires many approaches. Some are more commonly thought of as ‘fun’ or ‘nascent’ modes of learning, while others more clearly resemble work. I hope to marry this divide, showing students that language learning is both labor and recreation; they may have to work hard, but it can be a great deal of fun, too,” said Ephron. In addition to his work as a writing tutor in the Bard Learning Commons, Ephron has received multiple awards, including the PEN America Fellowship and the Bard Center for the Study of Hate Internship Scholarship.
Eleanor Tappen ’23, a Spanish Studies major, has been selected as a Fulbright ETA to Mexico for the 2023–24 academic year. Tappen has studied abroad in Granada, Spain, received her TESOL certification (which involved 40 hours of training), volunteered in a local elementary school in the fall of 2022, and works as an ESL tutor at the Learning Commons. For Tappen, a Fulbright teaching assistantship in Mexico is an intersection of her academic interest in Mexican literature and her passion for accessible and equitable language learning. During her Fulbright year, Tappen intends to volunteer at a local community garden, a setting she found ideal for cross-cultural exchange and friendship during her time at the Bard Farm. She also hopes to learn about pre-Colombian farming practices, whose revival is currently being led by indigenous movements in Mexico seeking to confront issues presented by unsustainable industrial agricultural practices. “I’m thrilled by the opportunity to live in the country whose literature and culture have served as such positive and significant points in both my academic and personal life. During my time as an ETA in Mexico, I hope to inspire in my students the same love of language-learning I found at Bard.”
Biology major Macy Jenks ’23 has been selected as an ETA to Taiwan for the 2023–24 academic year. Jenks is an advanced Mandarin language speaker having attended a Chinese immersion elementary school and continuing her Mandarin language studies through high school and college, including three weeks spent in China living with host family in 2015. She has tutored students in English at Bard’s Annandale campus, as well as through the Bard Prison Initiative at both Woodbourne Correctional Facility and Eastern New York Correctional Facility. She also has worked with the Bard Center for Civic Engagement to develop curricula and provide STEM programming to local middle and high school students. “As a Fulbright ETA, I hope to equip students with the tools necessary to hone their English language and cultural skills while encouraging them to develop their own voices,” says Jenks. While in Taiwain, she plans to volunteer with the Taiwan Root Medical Peace Corps, which offers medical care to rural communities, or with the Taipei Medical University in a more urban setting to further engage with the community and learn more about Taiwan’s healthcare systems and settings. With her love of hiking, Jenks also hopes to explore various cultural sites including the cave temples of Lion’s Head Mountain and Fo Guang Shan monastery and enjoy the natural beauty of Taiwan.
Bard Conservatory alumna Avery Morris ’18, who graduated with a BA in Mathematics and a BM in Violin Performance, has been selected for a prestigious Fulbright Study Research Award for 2023–24. Her project, “Gideon Klein’s Lost Works and the Legacy of Czech Musical Modernism,” aims to bring to light the early works of Czech composer and Holocaust victim Gideon Klein (1919–1945), which were lost until they were discovered in a suitcase in the attic of a house in Prague in the 1990s. She will live in Prague for the upcoming academic year and continue her research on Klein, which has been a focus of her studies at Stony Brook University, where she is pursuing a Doctorate of Musical Arts in Violin Performance.
Getzamany "Many" Correa ’21, a Global and International Studies major, has been selected as an ETA to Spain for the 2023–24 academic year. Correa was an international student in Bosnia and Herzegovina and Hungary. As an international student in high school, she started an initiative called English Conversation Buddies with the State Department-sponsored American Corner in Mostar, Bosnia and Herzegovina. She has received her TESOL certification (which involved 40 hours of training) and worked as an ESL tutor at the Learning Commons. In Spain, Correa hopes to create a book club that introduces students to diverse authors writing in English, study Spanish literature, and host dinners with the locals she meets. She also plans to volunteer with EducationUSA and support students applying to colleges and universities in the U.S. “A year-long ETA in Spain will allow me to experience a culture and language central to my academic and personal interests, leverage my background in education while furthering my teaching experience, and make meaningful connections through cross-cultural engagement,” says Correa.
The Fulbright US Student Program expands perspectives through academic and professional advancement and cross-cultural dialogue. Fulbright creates connections in a complex and changing world. In partnership with more than 140 countries worldwide, the Fulbright US Student Program offers unparalleled opportunities in all academic disciplines to passionate and accomplished graduating college seniors, graduate students, and young professionals from all backgrounds. Program participants pursue graduate study, conduct research, or teach English abroad. us.fulbrightonline.org.
Three Bard College alumni/ae—Beatrice Abbott ’15, Megumi Kivuva ’22, and Tobias Golz Timofeyev ’21—have been awarded competitive National Science Foundation (NSF) Graduate Research Fellowships for the 2023 award year. The NSF Graduate Research Fellowship Program (GRFP) aims to “ensure the quality, vitality, and diversity of the scientific and engineering workforce of the United States” and “seeks to broaden participation in science and engineering of underrepresented groups, including women, minorities, persons with disabilities, and veterans” through selection, recognition, and financial support of individuals who have demonstrated the potential to be high achieving scientists and engineers early in their careers.
Three Bard Alumni/ae Awarded NSF Graduate Research Fellowships
Three Bard College alumni/ae—Beatrice Abbott ’15, Megumi Kivuva ’22, and Tobias Golz Timofeyev ’21—have been awarded competitive National Science Foundation (NSF) Graduate Research Fellowships for the 2023 award year. The NSF Graduate Research Fellowship Program (GRFP) aims to “ensure the quality, vitality, and diversity of the scientific and engineering workforce of the United States” and “seeks to broaden participation in science and engineering of underrepresented groups, including women, minorities, persons with disabilities, and veterans” through selection, recognition, and financial support of individuals who have demonstrated the potential to be high achieving scientists and engineers early in their careers.
Beatrice Abbott ’15, who majored in political studies at Bard, has won a fellowship for the field of social sciences. She is a master’s student in geography at the University of Kentucky. Her research interests include evidence/forensics, critical migration studies, critical cartography and geographic information systems (GIS), and visual culture.
Megumi Kivuva ’22, who majored in Spanish studies and computer science with a concentration in Experimental Humanities at Bard, has won a fellowship for the field of STEM education and learning research. Kivuva is a PhD student in computing education at the University of Washington. Their research “aims to broaden participation in computing education for Black and refugee students,” and they “use community participatory research to understand the barriers to accessing computing education and codesign interventions to make computing education more accessible to these communities.”
Tobias Golz Timofeyev ’21, who majored in mathematics at Bard, has won a fellowship for the field of mathematical biology. He is a PhD student in mathematical sciences at the University of Vermont. The fellowship will allow him to focus on his research project, "Decoding Parallel Processing in the Brain using the Connectome Eigenfunctions."
As the oldest graduate fellowship of its kind, the GRFP has a long history of selecting recipients who achieve high levels of success in their future academic and professional careers. The five-year fellowship period provides a three-year annual stipend of $37,000 along with a $12,000 cost of education allowance for tuition and fees, as well as access to opportunities for professional development. NSF Fellows are anticipated to become knowledge experts who can contribute significantly to research, teaching, and innovations in science and engineering. Each year, the NSF receives more than 12,000 applications to the GRFP program, which has awarded fellowships to its selected scholars since 1952.
Bard College Astronomer Shuo Zhang and Undergraduate Student Rose Xu Discover New X-ray Flares from the Galactic Center Supermassive Black Hole Sgr A*
Bard College Assistant Professor of Physics Shuo Zhang and Bard mathematics and dance major Rose Xu ’23 were invited by the American Astronomical Society (AAS) to present their most recent findings on new x-ray flares from the now inactive supermassive black hole at the center of our Milky Way galaxy. Their talk, “Detection of Seven High-Energy X-ray Flares from the Milky Way’s Supermassive Black Hole,” was presented at the 241st AAS press conference on Thursday, January 12 from 5:15pm to 6:15pm ET, in person in Seattle and virtually via Zoom andYouTube livestream. For more information about the 241st AAS press conference, click here.
The center of the Milky Way galaxy harbors the nearest supermassive black hole Sgr A* to Earth, with forty million times the mass of the Sun. Although being in an inactive status nowadays, Sgr A* demonstrates mysterious flares almost every single day, which could come from magnetic phenomena. We are sitting in the front row of these cosmic fireworks. Using 2 Ms data from NASA’s NuSTAR X-ray telescope, our math senior Rose Xu, working with Bard physics professor Shuo Zhang, has discovered seven new hard X-ray flares that took place between 2016 and 2022. This new result doubled the current database of bright Sgr A* X-ray flares, and can help to answer long-standing questions in flare physics, such as: What are the physical mechanisms behind Sgr A* flare? Do bright flares and faint flares share the same origin?
Watch the Presentation at the American Astronomical Society Press Conference
“Astronomers are in the exhilarating process of revealing the physical conditions at the vicinity of our own supermassive black hole, which I couldn’t imagine myself being involved in before meeting professor Shuo Zhang. Solving practical problems from a liberal arts perspective is a skill that I am grateful to gain here at Bard College,” said Xu.
Jen Lara arrived at Bard intending to become a physics major with a future in engineering, but an important part of her Bard education included the realization that other interests were dearer to her heart.
“I saw that my real passion is not in the world of engineering. It doesn’t hold the sparkle for me. I've always been teaching, I have always tutored, I've always worked with nonprofits. I want to work in education in the minority community to see women in STEM [science, technology, engineering, mathematics]. STEM is where I can use my talents and abilities to do what I'm really passionate about, which is helping my community to do better in these subjects.”
So she is majoring in mathematics, and spent time teaching STEM at a nonprofit and at a local middle school. “Everything in my life revolves around education,” she says.
The daughter of immigrants from the Dominican Republic, and the first in her family to attend college, Lara grew up in the Corona, Queens, neighborhood of New York City. Her adviser convinced her to look at Bard, which, she says, was “the only school” that noted her first-generation status could be empowering rather than limiting. “They said, ‘We need to make a plan and find a space for you to be able to accomplish whatever you want to do. We’ll figure it out and we’ll make it happen.’ It was the first time I thought, ‘I don't have to do things by myself.’”
Lara became a peer counselor (PC) at Bard—someone in the residence halls who is trained to deal with many of her fellow residents’ concerns—which helped bring her out of her shell. “My first year I experienced culture shock, and being a PC has made me more social. I like being a support system for students, and the students are just as much a role model for me as I am for them. I take as much as I give. I tell them, ‘Advocate for yourselves; it’s the best thing that you can do.’”
In addition to being a PC and tutoring, she holds two jobs on campus while carrying her academic load. Nevertheless, she says, “I have students in my residence who run clubs and do athletics and their academics—that’s inspiring to me.”
One surprising thing she has learned at Bard is that “I learn very differently from most students. The time and dedication the faculty invested to help me made me realize that there are many different ways to learn. The strong support system makes sure that the way they are teaching matches the way you are learning.”
She wants students who are interested in Bard to know the kind of education she is receiving in Annandale: “You really learn how to be confident in your abilities and not be hard on yourself when things go wrong,” she advises. “You should be hungry, when you get here, to build the community that you want. The fact that Bard gives you the opportunity to do that is not something you’ll find at any other school.”
“At Bard,” she adds, “you are going to do things that you never thought you were capable of doing. And they might make you feel uncomfortable, but the fact that you can create a support system means you can also create the path that you want to take.”
Kate Belin BA ’04, MAT ’05, “Rock Star” Teacher, Talks Teaching Gerrymandering with Chalkbeat
Teaching without an agenda is not something that concerns Kate Belin BA ’04, MAT ’05. “I do have an agenda. I want to see a national shift in how we teach math, what math is, and who has access to it,” Belin said in an interview with Chalkbeat. In their role at the Bronx’s Fannie Lou Hamer Freedom High School, they continue to teach the mathematics of gerrymandering, “an especially relevant topic” today, and one that “will likely continue to be.” A winner of the 2021 Math for America (MƒA) Muller Award for Professional Influence in Education, Belin says their belief in the power of education was developed while at Bard, both as an undergraduate and graduate student. “I learned in college that mathematics was about creativity, patterns, problem-solving, and many more things that aren’t necessarily taught in K-12 school,” they said. “The master’s program at Bard College gave me hope that it was possible to bring more real mathematics into schools and that more students might fall in love with it, too.”
Professor Japheth Wood Awarded the American Mathematical Society’s Epsilon Award for the Third Time
For the third time, the American Mathematical Society has awarded Japheth Wood, director of quantitative literacy and continuing associate professor of mathematics, and the Creative and Analytical Math Programs (CAMP) of the Bard Math Circle the Epsilon Award. The award aids and promotes programs that “support and nurture mathematically talented youth in the United States,” funding existing summer programs proven to reach and support high school students. CAMP will return to an in-person format this year and will serve local and regional middle school students, with a staff that includes Bard alumni/ae and current students in mathematics and computer science.
High School Mathematics Teacher and Bard Alumna Kate Belin Wins 2021 Math for America Muller Award
Kate Belin BA ’04, MAT ’05, who teaches at Fannie Lou Hamer Freedom High School in the Bronx, is one of two winners of the 2021 Math for America (MƒA) Muller Award for Professional Influence in Education. This honor is given to two New York City public school teachers who, during their tenure as MƒA Master Teachers, have influenced the teaching profession in exceptional ways.
“Belin brings a creative approach to pedagogy and has dramatically improved math education at their school and beyond. She is being recognized for bringing her deep understanding of mathematics to all students and taking a leadership role to improve education and educational equity everywhere and for everyone,” writes MƒA.
“I am beyond grateful to MƒA for this recognition and for providing a space for teachers to come together as learners and leaders. This award also recognizes the work of the entire Fannie Lou community which has always understood that teaching is political,” said Belin. “We aren’t simply teaching subjects. We are teaching to fight injustices. Our job is to be activists and organizers in collaboration with our students—to mobilize youth for any issues that exist in their community, country, or world, and work together to make it better.”
Belin was recognized for her impact on the teaching profession and awarded $20,000 during a virtual MƒA award ceremony on Monday, October 18. In addition, $5,000 was awarded to the school or organization of their nominator. Belin was nominated by representatives from the Fannie Lou Hamer Freedom High School.
Kate Belin has taught mathematics at Fannie Lou Hamer Freedom High School for the past 17 years, transforming the mathematics curriculum of the school and mentoring student teachers. She was a recipient of the 2011 Sloan Award for Excellence in Teaching Science in Mathematics and was a Fulbright Distinguished Awards Teaching Fellow to Botswana in 2016. Belin earned their B.A. in Mathematics and M.A.T. at Bard College and has been an adjunct professor at City College of New York, Bard College, and the Bard Prison Initiative.
Professor Lauren L. Rose Selected as Association for Women in Mathematics 2022 Fellow
Associate Professor of Mathematics Lauren L. Rose has been selected as one of 13 scholars to join the Fifth Class of Association for Women in Mathematics (AWM) Fellows. These individuals are extraordinary researchers, mentors, and educators whose commitment to supporting and growing women across the mathematical sciences is praised by their students and colleagues.
Rose is being honored: “For broad efforts in the professional development of women in mathematics, especially undergraduate women; for her commitment to involving people from diverse communities in mathematics, through Math Circles and outreach in prisons; and for her creative contributions to the AWM including the We Speak Series and the Card Project,” states the AWM committee.
“I am very happy to announce the 2022 list of new AWM Fellows. We recognize these individuals for their exceptional dedication to increasing the success and visibility of women in mathematics,” wrote Kathryn Leonard, AWM President. The AWM 2022 Fellows will be recognized during the AWM reception held in January.
The Executive Committee of the Association for Women in Mathematics established the AWM Fellows Program to recognize individuals who have demonstrated a sustained commitment to the support and advancement of women in the mathematical sciences. The Fellows epitomize the mission of the AWM, which is to promote equitable opportunities and support for women and girls in the mathematical sciences.
Reem-Kayden Center4:00 pm – 5:30 pm EST/GMT-5 Join our December graduating seniors as the present their work!
Wednesday, November 16, 2022
Leon Horsten, Universitat Konstanz RKC 11112:00 pm – 1:00 pm EST/GMT-5 In my talk, I consider the kinds of reasons that a mathematician has for believing in mathematical statements. Moreover, we investigate some of the epistemic concepts that are connected to these reasons, such as justification, mathematical justification, proof, formal proof, philosophical proof. This area is the battleground of the disputes between the philosophers of mathematical practice on the one hand, and the ‘traditional’ philosophers of mathematics on the other hand. I will argue for a middle road in this debate.
Wednesday, November 9, 2022
Jeff Suzuki, Brooklyn College RKC 11112:00 pm – 1:00 pm EST/GMT-5 Everyone knows that calculus was invented by Newton. Or Leibniz. Actually, the real inventor was Isaac Barrow (Newton’s teacher), but Pierre de Fermat (1601–1661) solved all three of the main problems of calculus: finding tangents, extreme values, and areas under a curve. We’ll introduce Fermat’s method, then show how it leads to the familiar result that the integral of 1/x is ln x, and e as the base of the natural logarithmic function.
Jeff Suzuki was probably born indecisive, and double majored in history and mathematics with a concentration in physics. He avoided having to choose between them by writing a dissertation on the history of celestial mechanics. Since then, he’s done everything possible to avoid specialization, venturing into constitutional law, patents, and mathematics education, and as of this past weekend, is looking into the possibility of developing an open-world game based around mathematics.
Friday, November 4, 2022
Lisa Shabel, Ohio State University Barringer House12:00 pm – 1:00 pm EDT/GMT-4 Kant’s metaphysical project is framed by his revolutionary claim that some judgments are both synthetic and a priori knowable: one must seek their justification independent of sense experience (i.e., they are a priori) and yet the meaning of such judgments cannot be grasped via conceptual analysis (i.e., they are non-analytic). Kant claims further that allmathematical truths have this distinctive character, and he came to this view by reflecting on mathematical practice. We will discuss how to understand Kant’s view of mathematical truth in light of the mathematics with which he was engaged.
Wednesday, November 2, 2022
RKC 11111:45 am – 1:00 pm EDT/GMT-4
Friday, October 28, 2022
Andrew Gregory, University College London Hegeman 20412:00 pm – 1:00 pm EDT/GMT-4 Plato's use of number in his music theory, theory of matter, and cosmology raises some interesting questions in metaphysics and philosophy of science. What is the relation between mathematics, physics, and the world? Is there a beauty and simplicity to some mathematics and does that capture the nature of the world? What is the distinction (historical, philosophical) between mathematical physics and numerology? This paper looks at the nature and influence of Plato's views.
Monday, October 24, 2022
James D. Lewis, University of Alberta RKC 11112:00 pm – 1:00 pm EDT/GMT-4 In topology, there is the notion of a linking number of two oriented disjoint curves in affine 3-space. An algebraic generalization is the concept of a height pairing, which lies at the confluence of arithmetic and geometry. We explain a motivating example situation in an algebraic geometric setting. This talk is targeted to a general audience.
Friday, October 21, 2022
Reem-Kayden Center4:00 pm – 6:00 pm EDT/GMT-4 Join our summer research students as they present their work!
Karin Reinhold Larsson, SUNY Albany RKC 11112:00 pm – 1:00 pm EDT/GMT-4 Canadian-American astronomer Simon Newcomb was the first to notice the curious fact that the ten digits do not occur with the same frequency in logarithmic tables. This weird fact was observed on other sequences in nature such as the Fibonacci sequence, powers of two and factorials. We will learn a little of the history of Benford’s Law (BL) and do some simulations that will give us an insight to understand the reason behind BL. It turns out that many real life datasets follow BL. Understanding which processes follow BL has provided useful applications of BL into financial fraud detection.
Karin Reinhold Larsson is an associate professor at the University at Albany, SUNY. She was born in Argentina, obtained a licenciatura in mathematics from the University of Buenos Aires and a PhD in mathematics from Ohio State University. Her main research interests are in Ergodic Theory with connections to probability and harmonic analysis. She has served as president of the University Senate and she is involved the local community serving as statistical consultant in our own Peace Project.
Tuesday, October 4, 2022
Elana Kalashnikov, University of Waterloo RKC 1115:00 pm – 6:30 pm EDT/GMT-4 Algebraic geometry is the study of ‘shapes’ cut out by polynomial equations. One of the major open problems facing mathematicians today is how to classify these shapes. More complicated shapes can be broken into basic building blocks - so to classify all varieties it suffices to classify the basic building blocks. In this talk, we’ll explain how insights in string theory have given mathematicians a promising way of classifying the building blocks using Mirror Symmetry. The key idea is that each building block should correspond to certain decorated polytopes. Given a building block, the question is then how to produce such a polytope: this is done by degenerating the equations cutting out the shape of the building block. We’ll discuss what’s known about this approach, and what’s left to do, along with explicit examples.
Wednesday, September 28, 2022
RKC 11112:00 pm – 1:00 pm EDT/GMT-4 Antu Santanu “Towards a Universal Gibbs Phenomenon” Felicia Flores & Darrion Thornburgh “2-Caps in the Game of EvenQuads” Tina Giorgadze “Simplifying Text Using Sentence Fusion Graph” Hannah Kaufmann “Data Assimilation for Geophysics Models: Glaciers and Storm Surge” Josef Lazar “A Closer look at Projective SET” Daniel Rose-Levine "Fun with Quads"
Wednesday, September 21, 2022
Pamela E. Harris, University of Wisconsin-Milwaukee RKC 11112:00 pm – 1:00 pm EDT/GMT-4 Multiplex juggling sequences are generalizations of juggling sequences (describing throws of balls at discrete heights) that specify an initial and terminal configuration of balls and allow for multiple balls at any particular discrete height. Kostant’s partition function is a vector function that counts the number of ways one can express a vector as a nonnegative integer linear combination of a fixed set of vectors. What do these two families of combinatorial objects have in common? Attend this talk to find out!
Wednesday, September 14, 2022
Liz McMahon, Lafayette College RKC 11112:00 pm – 1:00 pm EDT/GMT-4 The card game SET is played with a special deck of 81 cards. There is quite a lot of mathematics that can be explored using the game; understanding that mathematics enhances our appreciation for the game, and the game enhances our appreciation for the mathematics! We’ll look at questions in combinatorics, probability, linear algebra, and especially geometry. There's also a Daily Puzzle, and we have found some interesting things out about that. If you’d like some practice before the talk, go to www.setgame.com (which will redirect you) for the rules and the Daily Puzzle.
Wednesday, September 7, 2022
Moshe Cohen, SUNY New Paltz RKC 11112:00 pm – 1:00 pm EDT/GMT-4 A line arrangement is a finite collection of lines in the plane. We can study a line arrangement using algebra and geometry by looking at equations of lines as in high school algebra. We can study this using combinatorics by looking at the points that are intersections of lines. We can study this using topology by looking at the complement -- the leftover space. We can ask if the combinatorial information forecasts the topological information of the complement by studying the moduli space of all geometric realizations. I will introduce several fun problems for us to work on to help acquaint ourselves with this topic and its many complexities. No specific background is required.
Wednesday, August 31, 2022
Learn about the math major, meet other math students and faculty, learn about our weekly seminar, and have pizza!
RKC 11112:00 pm – 1:00 pm EDT/GMT-4
Wednesday, August 17, 2022
Reem-Kayden Center Laszlo Z. Bito ‘60 Auditorium4:00 pm – 6:00 pm EDT/GMT-4 Questions about the Math Placement? Confused about what math course to take? Japheth Wood, Director of Quantitative Literacy, will be available to answer your questions.
Tuesday, August 16, 2022
Reem-Kayden Center, Laszlo Z. Bito ‘60 Auditorium4:00 pm – 6:00 pm EDT/GMT-4 Questions about the Math Placement? Confused about what math course to take? Japheth Wood, Director of Quantitative Literacy, will be available to answer your questions.
Andrew Schultz, Wellesley College Hegeman 204A12:00 pm – 1:00 pm EDT/GMT-4 Binomial coefficients are a staple in the world of combinatorics. Their usefulness in enumeration is nearly unparalleled, but their humble beginnings belie intricate structure and surprising depth. In the pursuit of understanding binomial coefficients more completely, one can encode them in a family of polynomials called Gaussian coefficients. Do these Gaussian coefficients have their own structure and depth? In this talk we'll introduce the Gaussian coefficients and see some surprising ways in which they are (almost!) as nice as their more famous brethren (and maybe a way or two in which they are even nicer).
Monday, May 9, 2022
Matt Kerr Washington University-St. Louis Hegeman 204A12:00 pm – 1:00 pm EDT/GMT-4 Then first you'll have to construct the table, which game regulations insist must pass through five given points. When you're done with that I’ll pick N<10, and to beat me you have to shoot the ball (from wherever I put it) so it returns in exactly N steps to where it started.
If you're not put off by a vector space of polynomials, you can make the elliptic table; and if you know how to spot a complex torus, then (with practice and foci) you can win. This is how I trap unsuspecting students into learning a bit of algebraic geometry.
Because the real title of this talk is: two theorems on conics in the plane!
Wednesday, April 20, 2022
Shira Zerbib, Iowa State University Hegeman 204A12:00 pm – 1:00 pm EDT/GMT-4 The KKM theorem, due to Knaster, Kuratowski and Mazurkiewicz in 1929, is a topological lemma reminiscent of Sperner's lemma and Brouwer's fixed point theorem. It has numerous applications in combinatorics, discrete geometry, economics, game theory and other areas. Generalizations of this lemma, in several different directions, were proved over the years (e.g., by Shapley, Gale, Komiya, Soberon) and have been widely applied as well. We will discuss a recent common generalization of all these theorems. We will also show two very different applications of KKM-type theorems: one is a proof of a conjecture of Eckhoff from 1993 on the line piercing numbers in certain families of convex sets in the plane, and the other is a theorem on fair division of multiple cakes among players with subjective preferences.
Wednesday, April 13, 2022
Marcus Michelen, University of Illinois-Chicago Hegeman 204A12:00 pm – 1:00 pm EDT/GMT-4 Consider a polynomial of degree n whose coefficients are -1 or 1 independently and randomly chosen. What do its roots typically look like? It turns out that random polynomials are an example of a very common phenomenon: large random structures typically exhibit a lot of predictable behavior. I'll discuss some common examples of this phenomenon, discuss the case of random polynomials, and also explain some applications of these random objects to other fields of math and computer science. No experience in probability will be expected or required; the goal is to give a gentle introduction to some deep facts.
Wednesday, March 16, 2022
Natalie Frank, Vassar College Hegeman 204A12:00 pm – 1:00 pm EDT/GMT-4 "Aperiodic order" is the study of highly ordered structures that fall just short of being periodic. Geometric questions in mathematics and decidability questions in logic provided early theoretical models of such structures. The Nobel Prize-winning discovery of physical quasicrystals in the 1980s led to the wider interest in aperiodically ordered structures. This talk will describe the mathematics of symmetry, the central role symmetry played in the discovery of quasicrystals, and the mathematical models that are used to describe quasicrystals today.
Wednesday, February 23, 2022
Caitlin Leverson, Math Program Hegeman 204A12:00 pm – 1:00 pm EST/GMT-5 Knots, which you can think of as a string knotted up with the ends glued together, are simple to define but are challenging to tell the difference between. We will discuss a few interesting invariants, algorithms to associate a number to a knot, which we can use to help differentiate between knots. We will also talk about a related notion of knots, called Legendrian knots, where we add a geometric condition. No previous knowledge of knots will be assumed.
Friday, February 11, 2022
Andrew Harder, Lehigh University Hegeman 10712:00 pm – 1:00 pm EST/GMT-5 An elliptic Lefschetz fibration is a smooth 4-manifold M (possibly with boundary) which admits a map to a surface S (possibly with boundary), and so that all but a finite number of fibers are diffeomorphic to a 2-torus, and the rest are homeomorphic to a “pinched” 2-torus. The classification of elliptic Lefschetz fibrations can be reduced to a (hard) problem in linear algebra whose solution is known in several cases — for instance, a theorem of Moishezon and Livné says that if S is just the 2-sphere then it is known that any elliptic Lefschetz fibration has 12n fibres which are pinched 2-tori for some integer n, and that the topology of M is completely determined by n.
Surprisingly, the situation where S is a 2-dimensional disc, despite being well studied, is not completely understood. In this talk, I will discuss an answer to this problem under certain conditions on the boundary of M and on the number of fibres which are singular. We reduce this problem to a question about linear algebraic objects called pseudo-lattices and apply a theorem of Kuznetsov to give a concrete description of a class of elliptic Lefschetz fibrations. Finally I will discuss my motivation for considering this problem and how this classification theorem reflects the numerical classification of weak del Pezzo surfaces in algebraic geometry. This is based on joint work with Alan Thompson.