1. A large rock is released from rest into a lake and allowed to drop. The rock’s acceleration after t seconds is $a = -6.54e^{-0.7t}$ m/s2.

(a) Determine the velocity of the rock after t seconds.

(b) What is the rock’s depth after t seconds?

(c) How many seconds does it take for the rock to sink 300 meters?

(d) What is the eventual velocity of the rock (as $t \to \infty$)?
2. Consider a tin can with radius \(r = 3 \text{ cm} \) and height \(h = 15 \text{ cm} \).

The side of the can has a thickness of 0.1 mm, while the top and bottom have a thickness of 0.2 mm. Estimate the total volume of metal used to make the can.
3. The following figure shows the region under the graph of $y = x^2$ from $x = 0$ to $x = L$.

Let h be the height of the region, and let A be the area.

(a) Find a formula for the height h in terms of the length L.

(b) Suppose we increase L by a small amount dL, causing the area A to increase by a small amount dA. Find a formula for dA in terms of L and dL.

(c) Divide through by dL to obtain a formula for $\frac{dA}{dL}$.

(d) Use your answer to part (c) to find a formula for the area A in terms of the length L.
4. A bowl with the shape of a parabola is partially filled with water.

(a) Find a formula for the radius r of the water in terms of its height h.

(b) Suppose we pour slightly more water into the bowl, increasing the height by a small amount dh. Find a formula for the volume dV of water that was added in terms of h and dh.

(c) Use your answer to part (b) to find a formula for the volume V of the water in terms of the height h.