Math 142: Worksheet 12

1. Consider the following differential equation:

\[
\frac{dy}{dx} = y(y + 2)(y - 3)
\]

(a) What are the constant solutions to this differential equation? (That is, what are the solutions of the form \(y = \text{a constant} \)?)

(b) For what values of \(y \) is the solution increasing? For what values is it decreasing?

(c) If \(y(x) \) is a solution with \(y(0) = 2 \), what do you think \(\lim_{x \to \infty} y(x) \) is equal to?

(d) If \(y(x) \) is a solution with \(y(0) = -1 \), what do you think \(\lim_{x \to \infty} y(x) \) is equal to?

(e) If \(y(x) \) is a solution with \(y(0) = 5 \), what do you think \(\lim_{x \to \infty} y(x) \) is equal to?
2. Consider the following differential equation:

\[\frac{dy}{dx} = y^2 + A \]

where \(A \) is a constant.

(a) If \(A < 0 \), what are the constant solutions? If \(A > 0 \), what are the constant solutions?

(b) Suppose that \(A < 0 \). For what values of \(y \) is the solution increasing? For what values of \(y \) is the solution decreasing?

(c) Suppose that \(A > 0 \). For what values of \(y \) is the solution increasing? For what values of \(y \) is the solution increasing?

(d) If \(A = -2 \) and \(y(0) = 1 \), what do you think \(\lim_{x \to \infty} y(x) \) is equal to?

(e) If \(A = -2 \) and \(y(0) = -3 \), what do you think \(\lim_{x \to \infty} y(x) \) is equal to?